US009325622B2

a2 United States Patent

Bello et al.

US 9,325,622 B2
Apr. 26, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

AUTONOMIC TRAFFIC LOAD BALANCING
IN LINK AGGREGATION GROUPS

Applicant: International Business Machines

Corporation, Armonk, NY (US)
Inventors: Adekunle Bello, Pflugerville, TX (US);
Omar Cardona, Cedar Park, TX (US);
Shaival J. Chokshi, Round Rock, TX
(US)

International Business Machines
Corporation, Armonk, NY (US)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 62 days.

Appl. No.: 14/095,319

Filed: Dec. 3, 2013

Prior Publication Data

US 2015/0156127 Al Jun. 4, 2015

Int. Cl1.
HO04J 3/22
HO4L 12/803
HO4L 12/891
HO4L 12/721
HO4L 12726
HO4L 12/707
HO4L 12/709
HO4L 12/751
U.S. CL

CPC

(2006.01)
(2013.01)
(2013.01)
(2013.01)
(2006.01)
(2013.01)
(2013.01)
(2013.01)

HO4L 47/125 (2013.01); HO4L 43/0882
(2013.01); HO4L 45/22 (2013.01); HO4L
45/245 (2013.01); HO4L 45/38 (2013.01);
HO04L 45/70 (2013.01); HO4L 47/41 (2013.01);
HO4L 45/02 (2013.01); HO4L 45/24 (2013.01);
Y02B 60/33 (2013.01)
Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
7,864,818 B2 1/2011 Fongetal.
7,940,661 B2 5/2011 Ervin et al.
8,284,791 B2 10/2012 Unger et al.
8,937,865 B1* 12015 Kumaretal. ... 370/235
2006/0251106 Al 11/2006 Nakagawa et al.
2007/0064605 Al* 3/2007 Hoetal. ... 370/230
2008/0291826 Al* 11/2008 Licardie etal. . 370/230
2008/0298236 Al* 12/2008 Ervin HO4L 47/10
370/232
2010/0165831 Al 7/2010 Elie-Dit-Cosaque et al.
2012/0087372 Al 4/2012 Narasimhan
2012/0102217 Al* 42012 Cardona GO6F 9/45558
709/235
2012/0320914 Al* 12/2012 Thynietal. ... 370/389
2013/0003549 Al* 1/2013 Matthews HO4L 1/0668
370/235
2013/0003559 Al* 1/2013 370/241
2014/0119193 Al* 5/2014 .. 370/237
OTHER PUBLICATIONS

U.S. Appl. No. 14/304,218, 1 page.
* cited by examiner

Primary Examiner — Kwang B Yao

Assistant Examiner — Juvena Loo

(74) Attorney, Agent, or Firm — Stephen J. Walder, Ir.;
Thomas E. Tyson

(57) ABSTRACT

Mechanisms are provided for performing traffic load balanc-
ing on ingress traffic directed to a Link Aggregation Group
(LAG). The mechanisms monitor a ingress traffic load across
aplurality of links of the Link Aggregation Group (LAG). The
mechanisms determine if the ingress traffic load across the
plurality of links is unbalanced. Moreover, the mechanisms,
in response to determining that the ingress traffic load across
the plurality of links is unbalanced, send a message to a
switch associated with the LAG requesting the switch to
modify routing of ingress traffic to the LAG to perform
ingress traffic load balancing.

16 Claims, 5 Drawing Sheets

208~ PROCESSING 20
UNIT(S)

219 22 208 216 pso
CRAPHICS R MAIN AUDIC o
prROCESSOR [MEMCH = wenory ADAPTER Sio

204
249 N 238
7\ BUS SBACH T S —=
USB AND
LAY O
DISK | | CD-ROM ';'\El*ﬁ;?g OTHER gg\",ﬁ% MODEM | | ROM
AT PORTS e ADAPTER

7 77

230 21

o
3
Fa

Y

234 226 224

P
N
R

US 9,325,622 B2

Sheet 1 of 5

U.S. Patent Apr. 26, 2016

NETWORK
SERVER : 114
CLIENT
138
FIG. 1
206~_| PROCESSING 200
UNIT(S)
70 502 208 216 236
% / /
GRAPHICS e b MAIN AUDIC .
PROCESSOR NE/MCH MEMORY ADAPTER SI0
204
240 \ 238
3 BUS
N eus SBACH us
, USB AND , KEYBOARD
Disk | | co-Rom tf\%z";’?gg OTHER ggijifgg AND MOUSE | | MoDEM | | ROM
PORTS ~ ADAPTER
226 239 212 232 234 220 272 224

FIG. 2

U.S. Patent

Apr. 26,2016 Sheet 2 of 5

SWITCH FABRIC
350

ROUTING TABLE(S) 380

SWITCH
340

r———1

—_——— | ————— —_—— e e | P — e ———

|

: ENTO ENT1 ENTZ ENT3
V| o312 || 34 316 318
|
|

LAG 310
LINK
AGGREGATION MONITORING
LOGIC
LOGIC o
320 il

TRAFFIC LOAD BALANCING LOGIC
KIiY

NETWORK ADAPTER
230

HOST SYSTEM

US 9,325,622 B2

U.S. Patent Apr. 26,2016 Sheet 3 of 5 US 9,325,622 B2

SWITCH FABRIC
350

ROUTING TABLE(S) 380

INGRESS TRAFEIC SWITCH
BALANCING 340
INFORMATION —

|

IIET IERRIETEE
| o312 || a4 316 318
|
|

J S —|

LAG 310
TRAFFIC STATS
LINK
AGGREGATION MONITORING BALANCEDY
LOGIC !
E_(;?LEC 360 UNBALANCED

TRAFFIC LOAD BALANCING LOGIC
270

NETWORKADAPTER
330

HOST SYSTEM

U.S. Patent Apr. 26,2016 Sheet 4 of 5 US 9,325,622 B2

500
DESTINATION ADDRESS
SOURCE ADDRESS
LENGTHITYPE
SUBTYPE = LACP
VERSION NUMBER
TLV_TYPE = ACTOR INFORMATION
ACTOR_INFORMATION_LENGTH =20
ACTOR_SYSTEM_PRIORITY FiG 5
ACTOR _SYSTEM
ACTOR_KEY
ACTOR_PORT_PRIORITY
ACTOR _PORT
ACTOR STATE

TL V_TYPE = PARTNER ENFORMATiON
PARTNER _INFORMATION _LENGTH=20

PARTNER_SYSTEM_PRIORITY TRAFFIC LOAD
PARTNER_SYSTEM BALANCING
INFORMATION

PARTNER_KEY

534
PARTNER_PORT_PRIORITY —

PARTNER _PORT
PARTNER STATE

U.S. Patent Apr. 26,2016 Sheet 5 of 5 US 9,325,622 B2

\ 4
GENERATE LAG
818

v
ASSOCIATE UNIQUE
TOKEN WITH EACH
LINKIN LAG AND
SEND TO SWITCH
528

FIG. 6 N
MONITOR INGRESS
TRAFFIC AND
GENERATE STATS

530

v
ANALYZE STATS TO
DETERMINE IF
INGRESS TRAFFIC IS
UNBALANCED
640

X

—UNBALANCED? — NO

<\ 850 —
@f
SEND INGRESS
TRAFFIC LOAD IDENTIFY DESIRED
BALANCING | AND EXCLUDED LAG
REQUESTTO | LINKS
WITCH B8O
870
\ 4
SWITCH UPDATES
ROUTING
STRUCTURES BASED >
ON REQUEST Y
680 END

US 9,325,622 B2

1
AUTONOMIC TRAFFIC LOAD BALANCING
IN LINK AGGREGATION GROUPS

BACKGROUND

The present application relates generally to an improved
data processing apparatus and method and more specifically
to mechanisms for autonomic traffic load balancing in link
aggregation groups.

A physical network is typically abstracted at the endpoints
for availability and scalability purposes. Both availability and
scalability are addressed by providing Link Aggregation
Groups (LAGs). Link aggregation is a computer networking
term used to describe various methods of combining, or
aggregating, multiple network connections in parallel to
increase throughput beyond what a single connection could
sustain, and to provide redundancy in case one of the links
fails. Such link aggregation may be implemented at any of the
lowest three levels of the Open Systems Interconnection
(OSI) model. Examples of aggregation at layer 1 (physical
layer) are power line and wireless network devices that com-
bine multiple frequency bands. OSI layer 2 (data link layer)
aggregation typically occurs across switch ports, which can
be either physical ports or virtual ports managed by an oper-
ating system. OS] layer 3 (network layer) aggregation is
possible using round-robin scheduling, or hash value based
scheduling, a combination, or the like.

The combining of links can either occur such that multiple
interfaces share one logical address (e.g., IP address) or one
physical address (e.g., MAC address), or it can be done such
that each interface has its own address. The former requires
that both ends of a link use the same aggregation method, but
has performance advantages over the latter. One standard for
performing link aggregation is specified in the Link Aggre-
gation Control Protocol (LACP).

A Link Aggregation Group (LAG) is a group of links that
have been aggregated together forming a group of links. A
LAG is generally coupled to one or more switches of a switch
fabric in a network. With regard to availability, a LAG allows
a network adapter/link error to be confined to the network
adapter/interface domain, where the “interface” is the
abstraction of the group of links as a single link. With regard
to scalability, the grouping of multiple physical links into one
abstracted interface, e.g., a single Etherchannel representing
a plurality of physical links, allows for aggregate latency and
throughput performance improvements. In both cases, the
user space applications are not participants in determining the
interface or switch fabric behavior.

SUMMARY

In one illustrative embodiment, a method, in a device com-
prising a processor, for performing traffic load balancing on
ingress traffic directed to a Link Aggregation Group (LAG).
The method comprises monitoring, by the device, an ingress
traffic load across a plurality of links of the Link Aggregation
Group (LAG). The method further comprises determining, by
the device, if the ingress traffic load across the plurality of
links is unbalanced. Moreover, the method comprises, in
response to determining that the ingress traffic load across the
plurality of links is unbalanced, sending, by the device, a
message to a switch associated with the LAG requesting the
switch to modify routing of ingress traffic to the LAG to
perform ingress traffic load balancing.

In other illustrative embodiments, a computer program
product comprising a computer useable or readable medium
having a computer readable program is provided. The com-

10

15

20

25

30

35

40

45

50

55

60

65

2

puter readable program, when executed on a computing
device, causes the computing device to perform various ones
of, and combinations of, the operations outlined above with
regard to the method illustrative embodiment.

In yet another illustrative embodiment, a system/apparatus
is provided. The system/apparatus may comprise link aggre-
gation logic, monitoring logic, and traffic load balancing
logic, each of which are configured to perform respective
ones, or combinations of, the operations of the method
described above. In some illustrative embodiments, the sys-
tem/apparatus may comprise one or more processor and a
memory coupled to the one or more processors. The memory
may comprise instructions which, when executed by the one
or more processors, cause the one or more processors to
perform various ones of, and combinations of, the operations
outlined above with regard to the method illustrative embodi-
ment.

These and other features and advantages of the present
invention will be described in, or will become apparent to
those of ordinary skill in the art in view of, the following
detailed description of the example embodiments of the
present invention.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The invention, as well as a preferred mode of use and
further objectives and advantages thereof, will best be under-
stood by reference to the following detailed description of
illustrative embodiments when read in conjunction with the
accompanying drawings, wherein:

FIG. 1is an example diagram of a distributed data process-
ing system in which aspects of the illustrative embodiments
may be implemented;

FIG. 2 is an example block diagram of a computing device
in which aspects of the illustrative embodiments may be
implemented;

FIG. 3 is an example diagram of the link aggregation group
during normal operation when traffic is balanced across the
links;

FIG. 4 illustrates a condition in which the traffic flowing
from the switch to the Link Aggregation Group (LAG)
becomes unbalanced;

FIG. 5 is an example diagram of a Link Aggregation Con-
trol Protocol (LACP) header of an LACP message in accor-
dance with one illustrative embodiment; and

FIG. 6 is a flowchart outlining an example operation for
performing ingress traffic balancing in accordance with one
illustrative embodiment.

DETAILED DESCRIPTION

As mentioned above, one mechanism for increasing the
reliability and throughput of network connections is to use
link aggregation and aggregate a plurality of links into a Link
Aggregation Group (LAG). A problem arises, however, under
current aggregation models, in that the load distribution
among the traffic flows (flow of data, data packets, frames,
etc. from one element to another) and adapters in use is
determined by tuples, e.g., a tuple of source address, source
port, destination address, and destination port. The lack of
sufficient entropy in the active tuple space is the key determi-
nant to unbalanced distribution of traffic on ingress flows, i.e.
from the switch to the LAG. Entropy, in this context, refers to
a measure of randomness where a high port entropy allows
distribution of connections uniformly across all available
ports in a LAG without any skew. Because links are specified

US 9,325,622 B2

3

in terms of tuples, even when link aggregation is utilized,
traffic of a particular link tends to go through a single port
rather than multiple ports so as to avoid out-of-order packets,
leading to a lack of sufficient entropy. The particular port to
which the traffic is directed is determined before the traffic
arrives at the network adapter of the host system and thus, is
not able to be controlled by the host system. For example, a
hashing algorithm may be utilized by the switches of the
network to take fields of a packet and generate a hash index
that points to a particular hash bucket identifying a corre-
sponding port with which the connection is associated.

The egress distribution, i.e. from the LAG to the switch, is
software controlled where software executing on the host
system can ensure proper traffic distribution among the links
of the LAG by performing load balancing operations. Thus,
the ingress flow traffic balance is outside the control of the
LAG mechanisms of the host even though egress traffic con-
trol is within the control of such LAG mechanisms. The
switch to which the LAG is coupled is bound to the tuple
constraints to ensure no out of order processing occurs on the
LAG side. It would be beneficial to have a mechanism which
allows the LAG to indicate to the switch how and when to
perform rebalancing of the ingress flows such that optimal
performance is obtained regardless of the particular traffic
flows.

The illustrative embodiments provide mechanisms for
autonomic traffic load balancing in link aggregation groups
(LAGs). With the mechanisms of the illustrative embodi-
ments, a LAG coordinates with an associated switch to nego-
tiate graceful transition of ingress traffic flows among the
members of the LAG. In some illustrative embodiments, the
Link Aggregation Control Protocol (LACP) is extended to
include extension fields to allow for passing information to
the switch to indicate the options for ingress traffic rebalanc-
ing. With the mechanisms of the illustrative embodiments, the
balancing of the ingress traffic is under the control of the LAG
by providing extended fields in heartbeat messages that are
constantly flowing between the switch and the LAG. These
extended fields contain information about which links in the
LAG are being overused. The extended fields may further
contain information about which links in the LAG are links to
which traffic that is otherwise mapped to the overused link
should be redirected. The switch uses this information when
routing traffic to reroute traffic from the overused link in the
LAG to the desired link in the LAG. In this way, the ingress
traffic is rebalanced under the control of the LAG of the host
system.

The illustrative embodiments provide relief in situations
where the network performance bottleneck is seen at an end-
point, i.e. source or destination computing device. The illus-
trative embodiments allow a system administrator to reduce
network pressure by adding more adapters to the LAG, e.g.,
an Etherchannel. The load balancing of the illustrative
embodiments is achieved without requiring measures of vari-
ous metrics on the communication devices to assure port
entropy. Furthermore, the illustrative embodiments do not
suffer from out-of-order packet issues that plague round-
robin load balancing methods.

The above aspects and advantages of the illustrative
embodiments of the present invention will be described in
greater detail hereafter with reference to the accompanying
figures. It should be appreciated that the figures are only
intended to be illustrative of exemplary embodiments of the
present invention. The present invention may encompass
aspects, embodiments, and modifications to the depicted
exemplary embodiments not explicitly shown in the figures

10

15

20

25

30

35

40

45

50

55

60

65

4

but would be readily apparent to those of ordinary skill in the
art in view of the present description of the illustrative
embodiments.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method,
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in any
one or more computer readable medium(s) having computer
usable program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium is
a system, apparatus, or device of an electronic, magnetic,
optical, electromagnetic, or semiconductor nature, any suit-
able combination of the foregoing, or equivalents thereof.
More specific examples (a non-exhaustive list) of the com-
puter readable storage medium would include the following:
an electrical device having a storage capability, a portable
computer diskette, a hard disk, a random access memory
(RAM), a read-only memory (ROM), an erasable program-
mable read-only memory (EPROM or Flash memory), an
optical fiber based device, a portable compact disc read-only
memory (CDROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium is any tangible medium that can contain or store a
program for use by, or in connection with, an instruction
execution system, apparatus, or device.

In some illustrative embodiments, the computer readable
medium is a non-transitory computer readable medium. A
non-transitory computer readable medium is any medium
that is not a disembodied signal or propagation wave, i.e. pure
signal or propagation wave per se. A non-transitory computer
readable medium may utilize signals and propagation waves,
but is not the signal or propagation wave itself. Thus, for
example, various forms of memory devices, and other types
of systems, devices, or apparatus, that utilize signals in any
way, such as, for example, to maintain their state, may be
considered to be non-transitory computer readable media
within the scope of the present description.

A computer readable signal medium, on the other hand,
may include a propagated data signal with computer readable
program code embodied therein, for example, in a baseband
oras part of a carrier wave. Such a propagated signal may take
any ofa variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer readable signal medium may be any computer read-
able medium that is not a computer readable storage medium
and that can communicate, propagate, or transport a program
for use by or in connection with an instruction execution
system, apparatus, or device. Similarly, a computer readable
storage medium is any computer readable medium that is not
a computer readable signal medium.

Computer code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, radio
frequency (RF), etc., or any suitable combination thereof.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including

US 9,325,622 B2

5

an object oriented programming language such as Java™,
Smalltalk™, C++, or the like, and conventional procedural
programming languages, such as the “C” programming lan-
guage or similar programming languages. The program code
may execute entirely on the user’s computer, partly on the
user’s computer, as a stand-alone software package, partly on
the user’s computer and partly on a remote computer, or
entirely on the remote computer or server. In the latter sce-
nario, the remote computer may be connected to the user’s
computer through any type of network, including a local area
network (LAN) or a wide area network (WAN), or the con-
nection may be made to an external computer (for example,
through the Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to the illustrative embodiments of the inven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer program instructions.
These computer program instructions may be provided to a
processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions that implement the func-
tion/act specified in the flowchart and/or block diagram block
or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus, or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

30

40

45

50

55

6

Thus, the illustrative embodiments may be utilized in many
different types of data processing environments. In order to
provide a context for the description of the specific elements
and functionality of the illustrative embodiments, FIGS. 1
and 2 are provided hereafter as example environments in
which aspects of the illustrative embodiments may be imple-
mented. It should be appreciated that FIGS. 1 and 2 are only
examples and are not intended to assert or imply any limita-
tion with regard to the environments in which aspects or
embodiments of the present invention may be implemented.
Many modifications to the depicted environments may be
made without departing from the spirit and scope of the
present invention.

FIG. 1 depicts a pictorial representation of an example
distributed data processing system in which aspects of the
illustrative embodiments may be implemented. Distributed
data processing system 100 may include a network of com-
puters in which aspects of the illustrative embodiments may
be implemented. The distributed data processing system 100
contains at least one network 102, which is the medium used
to provide communication links between various devices and
computers connected together within distributed data pro-
cessing system 100. The network 102 may include connec-
tions, such as wire, wireless communication links, or fiber
optic cables.

In the depicted example, server 104 and server 106 are
connected to network 102 along with storage unit 108. In
addition, clients 110, 112, and 114 are also connected to
network 102. These clients 110, 112, and 114 may be, for
example, personal computers, network computers, or the like.
In the depicted example, server 104 provides data, such as
boot files, operating system images, and applications to the
clients 110, 112, and 114. Clients 110, 112, and 114 are
clients to server 104 in the depicted example. Distributed data
processing system 100 may include additional servers, cli-
ents, and other devices not shown.

In the depicted example, distributed data processing sys-
tem 100 is the Internet with network 102 representing a
worldwide collection of networks and gateways that use the
Transmission Control Protocol/Internet Protocol (TCP/IP)
suite of protocols to communicate with one another. At the
heart of the Internet is a backbone of high-speed data com-
munication lines between major nodes or host computers,
consisting of thousands of commercial, governmental, edu-
cational and other computer systems that route data and mes-
sages. Of course, the distributed data processing system 100
may also be implemented to include a number of different
types of networks, such as for example, an intranet, a local
area network (LAN), a wide area network (WAN), or the like.
As stated above, FIG. 1 is intended as an example, not as an
architectural limitation for different embodiments of the
present invention, and therefore, the particular elements
shown in FIG. 1 should not be considered limiting with regard
to the environments in which the illustrative embodiments of
the present invention may be implemented.

FIG. 2 is a block diagram of an example data processing
system in which aspects of the illustrative embodiments may
be implemented. Data processing system 200 is an example
of'a computer, such as client 110 in FIG. 1, in which computer
usable code or instructions implementing the processes for
illustrative embodiments of the present invention may be
located.

In the depicted example, data processing system 200
employs a hub architecture including north bridge and
memory controller hub (NB/MCH) 202 and south bridge and
input/output (1/O) controller hub (SB/ICH) 204. Processing
unit 206, main memory 208, and graphics processor 210 are

US 9,325,622 B2

7

connected to NB/MCH 202. Graphics processor 210 may be
connected to NB/MCH 202 through an accelerated graphics
port (AGP).

In the depicted example, local area network (LAN) adapter
212 connects to SB/ICH 204. Audio adapter 216, keyboard
and mouse adapter 220, modem 222, read only memory
(ROM) 224, hard disk drive (HDD) 226, CD-ROM drive 230,
universal serial bus (USB) ports and other communication
ports 232, and PCI/PCle devices 234 connect to SB/ICH 204
through bus 238 and bus 240. PCI/PCle devices may include,
for example, Ethernet adapters, add-in cards, and PC cards for
notebook computers. PCI uses a card bus controller, while
PCle does not. ROM 224 may be, for example, a flash basic
input/output system (BIOS).

HDD 226 and CD-ROM drive 230 connect to SB/ICH 204
through bus 240. HDD 226 and CD-ROM drive 230 may use,
for example, an integrated drive electronics (IDE) or serial
advanced technology attachment (SATA) interface. Super [/O
(SI0) device 236 may be connected to SB/ICH 204.

An operating system runs on processing unit 206. The
operating system coordinates and provides control of various
components within the data processing system 200 in FIG. 2.
As a client, the operating system may be a commercially
available operating system such as Microsoft® Windows 7®.
An object-oriented programming system, such as the Java™
programming system, may run in conjunction with the oper-
ating system and provides calls to the operating system from
Java™ programs or applications executing on data processing
system 200.

As a server, data processing system 200 may be, for
example, an IBM® eServer™ System P® computer system,
running the Advanced Interactive Executive (AIX®) operat-
ing system or the LINUX® operating system. Data process-
ing system 200 may be a symmetric multiprocessor (SMP)
system including a plurality of processors in processing unit
206. Alternatively, a single processor system may be
employed.

Instructions for the operating system, the object-oriented
programming system, and applications or programs are
located on storage devices, such as HDD 226, and may be
loaded into main memory 208 for execution by processing
unit 206. The processes for illustrative embodiments of the
present invention may be performed by processing unit 206
using computer usable program code, which may be located
in a memory such as, for example, main memory 208, ROM
224, or in one or more peripheral devices 226 and 230, for
example.

A bus system, such as bus 238 or bus 240 as shown in FIG.
2, may be comprised of one or more buses. Of course, the bus
system may be implemented using any type of communica-
tion fabric or architecture that provides for a transfer of data
between different components or devices attached to the fab-
ric or architecture. A communication unit, such as modem
222 or network adapter 212 of FIG. 2, may include one or
more devices used to transmit and receive data. A memory
may be, for example, main memory 208, ROM 224, oracache
such as found in NB/MCH 202 in FIG. 2.

Those of ordinary skill in the art will appreciate that the
hardware in FIGS. 1 and 2 may vary depending on the imple-
mentation. Other internal hardware or peripheral devices,
such as flash memory, equivalent non-volatile memory, or
optical disk drives and the like, may be used in addition to or
in place of the hardware depicted in FIGS. 1 and 2. Also, the
processes of the illustrative embodiments may be applied to a
multiprocessor data processing system, other than the SMP
system mentioned previously, without departing from the
spirit and scope of the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

8

Moreover, the data processing system 200 may take the
form of any of a number of different data processing systems
including client computing devices, server computing
devices, a tablet computer, laptop computer, telephone or
other communication device, a personal digital assistant
(PDA), or the like. In some illustrative examples, data pro-
cessing system 200 may be a portable computing device that
is configured with flash memory to provide non-volatile
memory for storing operating system files and/or user-gener-
ated data, for example. Essentially, data processing system
200 may be any known or later developed data processing
system without architectural limitation.

In accordance with the illustrative embodiments, one or
more of the computing devices in FIG. 1 may implement link
aggregation mechanisms that implements Link Aggregation
Groups (LAGs) and permits such LAGs to control ingress
traffic by providing mechanisms for communicating between
the L AGs and their associated switches to thereby inform the
switches of the manner by which the L AGs wish the switches
to rebalance traffic across the links of the LAG. For example,
network adapters, such as network adapter 212 in FIG. 2, in
one or more of the servers 104,106 in FIG. 1 may implement
logic and an extended Link Aggregation Control Protocol
(LACP) that is extended to implement the features of the
illustrative embodiments for performing ingress traffic load
balancing with a LAG of the network adapter.

FIGS. 3-4 are example diagrams illustrating issues with
regard to unbalanced traffic in a link aggregation group. FIG.
3 is an example diagram of the link aggregation group during
normal operation when traffic is balanced across the links, i.e.
no spikes in traffic have occurred on any of the links of the link
aggregation group. As shown in FIG. 3, the link aggregation
group (LAG) 310, created using the link aggregation logic
320 (which may be implemented as software executed on
hardware of the network adapter, firmware, hardware logic
circuits, or any combination of the above) of the network
adapter 330, comprises four links 312-318 that are aggregated
into the LAG 310. The links 312-318 may be provided via
physical of a network adapter that are coupled to the switch
340 of a switch fabric 350. It should be appreciated that the
network adapter may utilize logical ports as well, but these
logical ports must be coupled to the switch 340 via physical
ports. Logical ports may be assigned to LAGs in a similar
manner as physical ports without departing from the spirit
and scope of the illustrative embodiments.

The links themselves may utilize any suitable communica-
tion protocol for the particular implementation. For purposes
of the description of the illustrative embodiments, it will be
assumed that the links are Ethernet links. However, it should
be appreciated that this is only an example and is not intended
to be limiting with regard to the types of links with which the
illustrative embodiments operate. To the contrary, other types
of'links, such as Fiber Channel, InfiniBand, and the like, may
be used without departing from the spirit and scope of the
illustrative embodiments.

As mentioned above, the links 312-318 are combined into
a LAG by link aggregation logic 320 of the network adapter
330. Link aggregation is generally known in the art and thus,
a more detailed explanation of how link aggregation is
accomplished is not provided herein. Any link aggregation
model and logic may be used to perform the actual link
aggregation and manage the link aggregation with the illus-
trative embodiments enhancing the management of the link
aggregation by providing the additional functionality as
described herein for balancing ingress traffic of a LAG.

For purposes of the description of the illustrative embodi-
ments, it will be assumed that the LAG 310 is an EtherChan-

US 9,325,622 B2

9

nel comprising the plurality of Ethernet links 312-318. Ether-
Channel is a port link aggregation technology that allows
grouping of several physical Ethernet links to create on logi-
cal Ethernet link for purposes of providing fault-tolerance and
high-speed links between switches, routers, and servers. An
EtherChannel can be created from between two and eight
active Fast, Gigabit or 10-Gigabit Ethernet ports, with an
additional one to eight inactive (failover) ports which become
active as the other active ports fail. EtherChannel is primarily
used in the backbone network, but can also be used to connect
end user machines. While an EtherChannel is assumed for
description purposes, this is not intended to be limiting and
any type of LAG 310 may be used depending on the particular
implementation desired.

As shown in FIG. 3, the traffic flowing from the switch 340
of'the switch fabric 350 into the LAG 310, i.e. ingress traffic,
is balanced under normal conditions. This is depicted in FIG.
3 as the arrow pointing from the switch 340 to the link ports
(physical or logical) 312-318 being all of the same thickness.
That is, no link 312-318 is being overly utilized and no other
link 312-318 is being underutilized. In such a situation, load
balancing of the ingress traffic is not needed and the mecha-
nisms of the illustrative embodiments need not perform any
rebalancing of the ingress traffic.

With reference now to FIG. 4, this figure illustrates a con-
dition in which the traffic flowing from the switch 340 to the
LAG 310 becomes unbalanced. This may occur, for example,
when there is a burst or spike of traffic on one of the links
312-318 of the LAG 310. For example, in the depicted
example, the traffic on link 318 experiences a spike which is
depicted as a wider or thicker arrow flowing from the switch
340 to port 318 of the LAG 310. In accordance with the
illustrative embodiments, monitoring logic 360 is provided in
the network adapter 330 for monitoring the load on each of
the links 312-318. For example, the monitoring logic 360 may
generate statistics for each of the links 312-318 of the LAG
310 to determine a statistical measure of the amount of data
flowing through each of the links 312-318 over a specified
time quanta. These statistical measures may be further ana-
lyzed by the monitoring logic 360 to determine if the traffic of
the LAG 310 is unbalanced. For example, comparisons of the
statistical measures of each of the links 312-318 for the speci-
fied time quanta may be made to determine if one or more of
the links 312-318 has a threshold amount or more of extra
traffic than another link 312-318 in the LAG 310. Other types
of analysis may be utilized as long as the analysis results in an
indication of whether the ingress traffic of a LAG is balanced
or unbalanced.

The monitoring logic 360 generates a result based on its
analysis as to whether the ingress traffic of the LAG 310 is
unbalanced or not and provides that result, as well as the
statistical measure information for the links 312-318 to the
traffic load balancing logic 370 of the network adapter 330.
Thetraffic load balancing logic 370 determines the manner by
which to balance the traffic load across the links 312-318 of
the LAG 310. In so doing, the traffic load balancing logic 370
determines a desired LAG link and an exclude LAG link. The
desired LAG link is a preferred physical link to which future
traffic for the connection is to be transitioned, e.g., a link
312-316 that has a relatively lower statistical measure of
traffic flow for the time quanta. The exclude LAG link is a
physical link to exclude from the balancing group for this
connection so that additional future traffic is not directed to
this link, e.g., a link 318 having a relatively high statistical
measure of traffic flow for the time quanta.

This information may be communicated back to the switch
340 so that the switch 340 may utilize this information when

25

40

45

65

10

routing traffic to the LAG 310. That is, this information is
communicated back to the switch 340 along with information
specifically identifying the connection with which the infor-
mation is associated. The switch 340 receives this informa-
tion and updates its routing table(s) 380, e.g., its Content
Addressable Memories (CAM), to route traffic, e.g., data
packets, to the desired LAG link port and to no longer route
traffic to the exclude LAG link port. Various ways of imple-
menting this change in the routing may be utilized including
extending the CAM table of the routing table(s) 380 to
include a directive field for each entry that has a pointer to a
directive database that indicates a directive for routing pur-
poses. Other implementations may be to include an invalidate
bit for link entries in the CAM table that invalidates the
exclude LAG link and may have a different value for desired
LAG links. Any implementation that permits the switch 340
to discern between a desired LAG link and an exclude LAG
link in a LAG of a connection may be used without departing
from the spirit and scope of the illustrative embodiments.

After updating its routing table(s) 380 data structures, the
switch 340 may begin routing the ingress traffic destined for
the LAG 310 using the updated routing table(s) 380. In this
way, traffic is rebalanced by rerouting traffic from the overly
utilized link 318 to one or more of the less utilized links
312-316. The network adapter 320 on the LAG 310 side of the
communication is responsible for buffering and synchroniz-
ing data packets until the traffic begins to flow over the newly
configured LAG links. Hence, the balance of the ingress
traffic is returned to the state shown in FIG. 3.

In order to communicate the information from the LAG
310 side of the communication connection to the switch 340,
e.g., from the traffic load balancing logic 370 of the network
adapter 320 to the switch 340, a message is transmitted by the
network adapter 320 to the switch 340. Such messages may
be sent continuously, periodically, or in response to detected
events, e.g., in response to an unbalanced traffic load of the
LAG 310 being detected. In one illustrative embodiment, the
message sent to the switch 340 is a Link Aggregation Control
Protocol (LACP) message having the information in a LACP
header associated with the LACP message. The LACP mes-
sage may be a heartbeat message that is sent from the network
adapter 320 to the switch 340 on a periodic basis to inform the
switch 340 that the connections with the network adapter 320
are still live. The illustrative embodiments may utilize
reserved fields of the LACP header that are not being utilized
for communicating other information, as a mechanism for
communicating the information regarding desired and
excluded LAG links for specified connections to the switch
340. Thus, a separate message for this purpose is not required
and the information may be communicated without requiring
additional fields or large payloads in the LACP message.

FIG. 5 is an example diagram of a LACP header of an
LACP message in accordance with one illustrative embodi-
ment. As shown in FIG. 5, the LACP header 500 comprises a
plurality of fields, the majority of which are utilized for their
standard purposes as specified in the LACP specification. As
shown in FIG. 5, fields 510 and 520, in the LACP specifica-
tion, are reserved fields for the actor (the entity initiating
communication and performing actions), and the partner,
respectively. These fields may be 3 bytes in size in the current
LACP specification. However, in accordance with the illus-
trative embodiments, these fields 510 and 520 are repurposed
to store the traffic load balancing information 530 that is
communicated by the network adapter to the switch for pur-
poses of performing ingress traffic load balancing fora LAG.
For example, a tuple value and unique token value (described
hereafter) may be placed in field 510 and a desired/exclude

US 9,325,622 B2

11

LAG link identifiers may be placed in field 520. Of course
other distributions of this information between fields 510 and
520 may be used without departing from the spirit and scope
of the illustrative embodiments.

For example, in one illustrative embodiment, on the LAG
side of the communication connection, each ingress tuple
representing a communication connection, e.g., source
address, source port, destination address, and destination
port, is identified by a unique token value. This token value
may be provided to the switch via a LACP extension
exchange such that the switch is informed of the correspon-
dence between the tuple and the token and this information
may be stored in a routing table data structure in the switch.

The LACP message that is transmitted from the network
adapter to the switch contains the LACP header 500 with the
ingress traffic load balancing information contained in one or
more of the fields 510 and 520 of the LACP header 500. The
ingress traffic load balancing information comprises the tuple
value for the connection, i.e. the switch side value used to
identify the connection (this tuple may be generated via a
tuple hashing mechanism of the switch as is generally known
in the art). The ingress traffic load balancing information
further comprises the unique token that is generated on the
LAG side to identify the connection, the desired LAG link
identifier which is the preferred physical link to transition
future traffic to as determined by the traffic load balancing
logic of the network adapter, and an exclude LAG link iden-
tifier which is the physical link to exclude from the balancing
group for the connection as determined by the traffic load
balancing logic for the network adapter. It should be appre-
ciated that the token is included in the illustrative embodi-
ments since it is foreseeable that different directives may be
used for the same tuple, however in other illustrative embodi-
ments the tuple along may be used without the need for a
token.

Thus, the LACP header 500 contains the ingress traffic load
balancing information that is used to direct the switch to
perform ingress traffic load balancing for the LAG and is
communicated by the network adapter to the switch. Such
control over ingress traffic for LAGs is not available in known
load balancing mechanisms.

The LACP message containing the LACP header 500 may
be a heartbeat message that is sent to the switch on a periodic
basis to inform the switch that the network adapter is still alive
and functioning properly. Alternatively, the LACP message
may be a message that is sent in response to an event being
detected, such as the detection of unbalanced ingress traffic
for a LAG, for example. In accordance with the illustrative
embodiments, the switch further comprises logic for consum-
ing the received LACP message and using the token value,
desired LAG link, and exclude LAG link as additional
entropy variables when generating the result of the tuple hash
of a data packet. That is, if a data packet is destined for the
LAG and has a tuple hash that results in the exclude LAG link
being the target of the routing, then the desired LAG link is
used instead, at least until further notice from the network
adapter.

The LACP message having the LACP header 500 is sent to
the switch as a request which the switch is free to ignore if the
switch does not support such functionality or if conditions
exist that make it necessary to ignore the request. One or more
of these LACP messages may be exchanged between the
network adapter and the switch, such as one for each LAG
supported by the network adapter. While a single LACP mes-
sage at a time is described above as being used to reconfigure
the routing of the switch with regard to ingress traffic, the
illustrative embodiments are not limited to such. Rather, in

10

15

20

25

30

35

40

45

50

55

60

65

12

some illustrative embodiments, the network adapter may gen-
erate a LACP frame with multiple LACP messages describing
multiple connections. The switch may then batch process the
messages when the LACP frame is received at the switch.

The determination of an unbalanced condition of ingress
traffic of a LAG and subsequent messaging between the net-
work adapter and the switch may be repeated over the lifetime
of'the LAG to switch association, thereby providing normal-
ization of optimal performance traffic distribution. The
mechanism of the illustrative embodiments avoid using an
OSI layer 5 header as it introduces application level impacts
resulting in proprietary protocols. Thus, the illustrative
embodiments are independent of any mechanism which
would break the standard OSI or application semantics.

FIG. 6 is a flowchart outlining an example operation for
performing ingress traffic balancing in accordance with one
illustrative embodiment. As shown in FIG. 6, the operation
starts with the establishment in a network adapter of a link
aggregation group (LAG) comprising a plurality of links,
each being identified by a tuple, e.g., source address, source
port, destination address, and destination port (step 610). A
unique token is associated with each of the links in the LAG
and communicated to the switch with which the LAG is
associated (step 620). The ingress traffic of the links of the
LAG is monitored and statistical measures of the ingress
traffic are generated (step 630). The statistical measures of the
ingress traffic are analyzed to determine if the ingress traffic
is unbalanced across the links of the LAG (step 640).

A determination is made as to whether the ingress traffic is
unbalanced for the LAG (step 650). If not, the operation
terminates. If so, then a desired LAG link and exclude LAG
link are identified (step 660). An ingress traffic load balancing
request is transmitted to the switch indicating the desired
LAG link and exclude LAG link (step 670). The switch
updates its routing data structures to cause data traffic target-
ing the exclude LAG link to be rerouted to the desired LAG
link before transmission to the LAG (step 680). The operation
then terminates.

It should be appreciated that while FIG. 6 illustrates the
operation terminating, the operation may in fact be repeated
on a continuous or periodic basis. Moreover, it should be
appreciated that while FIG. 6 shows the message being trans-
mitted in response to the determination that the ingress traffic
is unbalanced, in other illustrative embodiments the messages
are always transmitted, but when the ingress traffic is not
unbalanced, the messages will not indicate any desired or
exclude LAG links. Such an embodiment may utilize the
heartbeat messages transmitted between the network adapter
and switch to accomplish the messaging, for example.

Moreover, it should be appreciated that while the illustra-
tive embodiments have been described with the traffic load
balancing and monitoring logic being provided in the net-
work adapter, in other illustrative embodiments, one or more
of the logic elements may be provided in the host system
associated with the network adapter. In this way, the host
system may be involved in determining how to perform the
traffic load balancing for a LAG rather than requiring the
logic to be provided in the network adapter.

Thus, the illustrative embodiments provide mechanisms
for allowing the LAG of a network adapter to control the
routing of traffic to the LAG by the network adapter. In this
way, ingress traffic may be load balanced when it would
otherwise not be able to be controlled by the LAG.

As noted above, it should be appreciated that the illustra-
tive embodiments may take the form of an entirely hardware
embodiment, an entirely software embodiment or an embodi-
ment containing both hardware and software elements. In one

US 9,325,622 B2

13

example embodiment, the mechanisms of the illustrative
embodiments are implemented in software or program code,
which includes but is not limited to firmware, resident soft-
ware, microcode, etc.

A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor-
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.

Input/output or /O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to
the system either directly or through intervening I/O control-
lers. Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices
through intervening private or public networks. Modems,
cable modems and Ethernet cards are just a few of the cur-
rently available types of network adapters.

The description of the present invention has been presented
for purposes of illustration and description, and is not
intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art. The embodiment
was chosen and described in order to best explain the prin-
ciples of the invention, the practical application, and to enable
others of ordinary skill in the art to understand the invention
for various embodiments with various modifications as are
suited to the particular use contemplated.

What is claimed is:

1. An apparatus comprising:

link aggregation logic;

monitoring logic coupled to the link aggregation logic; and

ingress traffic load balancing logic coupled to the monitor-

ing logic, wherein:

the link aggregation logic is configured to generate a Link

Aggregation Group (LAG) comprising a plurality of
links supported by the apparatus,

the monitoring logic is configured to monitor an ingress

traffic load across the plurality of links of'a Link Aggre-
gation Group (LAG),

the monitoring logic is configured to determine if the

ingress traffic load across the plurality of links is unbal-
anced, and

the ingress traffic load balancing logic is configured, in

response to determining that the ingress traffic load
across the plurality of links is unbalanced, to send a
message to a switch associated with the LAG requesting
the switch to modify routing of ingress traffic to the LAG
to perform ingress traffic load balancing, wherein the
message is an extended Link Aggregation Control Pro-
tocol (LACP) message extended to include one or more
fields for specifying parameters for the ingress traffic
load balancing to the switch, and wherein the one or
more fields comprises a first field in a LACP header of
the extended LACP message thatis reserved for an actor,
and a second field in the LACP header of the extended
LACP message that is reserved for a partner.

2. The apparatus of claim 1, wherein the parameters for the
ingress traffic load balancing comprises a first parameter
identifying a first link in the LAG, that is an overused link in
the LAG, and a second parameter identifying a second link to
which ingress traffic directed to the overused link should be
redirected.

10

15

20

25

30

35

40

45

50

55

60

65

14

3. The apparatus of claim 2, wherein the switch, in response
to receiving the extended LACP message, updates a routing
table in the switch to redirect ingress traffic from the first link
to the second link.

4. The apparatus of claim 1, wherein the extended LACP
message is a heartbeat message sent from the device to the
switch.

5. The apparatus of claim 1, wherein the monitoring logic
is further configured to monitor the ingress traffic load across
a plurality of links of the LAG at least by:

generating a statistical measure of an amount of data flow-

ing through each link of the LAG over a specified time
quanta; and

comparing the statistical measures of each of the links in

the LAG to each other link in the LAG to determine if
one link has a statistical measure that is equal to or
greater than a threshold amount greater than the statis-
tical measure of the other links.

6. The apparatus of claim 1, wherein the switch, in response
to receiving the message, updates a routing table of the switch
to redirect ingress traffic directed to an overused link in the
LAG to another link in the LAG.

7. The apparatus of claim 6, wherein the routing table of the
switch is extended to include a directive field for each entry in
the routing table, wherein the directive field stores a pointer to
a directive database that indicates a directive for routing pur-
poses, and wherein updating the routing table comprises
updating a directive field of an entry in the routing table
associated with the overused link to point to a directive in the
directive database to route ingress traffic to the another link.

8. A computer program product comprising a non-transi-
tory computer readable medium having a computer readable
program stored therein, wherein the computer readable pro-
gram, when executed on a computing device, causes the com-
puting device to:

monitor an ingress traffic load across a plurality of links of

a Link Aggregation Group (LAG);

determine if the ingress traffic load across the plurality of

links is unbalanced; and

in response to determining that the ingress traffic load

across the plurality of links is unbalanced, send a mes-
sage to a switch associated with the LAG requesting the
switch to modify routing of ingress traffic to the LAG to
perform ingress traffic load balancing, wherein the mes-
sage is an extended Link Aggregation Control Protocol
(LACP) message extended to include one or more fields
for specifying parameters for the ingress traffic load
balancing to the switch, and wherein the one or more
fields comprises a first field in a LACP header of the
extended LACP message that is reserved for an actor,
and a second field in the LACP header of the extended
LACP message that is reserved for a partner.

9. The computer program product of claim 8, wherein the
parameters for the ingress traffic load balancing comprises a
first parameter identifying a first link in the LAG, that is an
overused link in the LAG, and a second parameter identifying
a second link to which ingress traffic directed to the overused
link should be redirected.

10. The computer program product of claim 9, wherein the
switch, in response to receiving the extended LACP message,
updates a routing table in the switch to redirect ingress traffic
from the first link to the second link.

11. The computer program product of claim 8, wherein the
extended LACP message is a heartbeat message sent from the
device to the switch.

US 9,325,622 B2

15

12. The computer program product of claim 8, wherein the
monitoring logic is further configured to monitor the ingress
traffic load across a plurality of links of the LAG at least by:

generating a statistical measure of an amount of data flow-

ing through each link of the LAG over a specified time
quanta; and

comparing the statistical measures of each of the links in

the LAG to each other link in the LAG to determine if
one link has a statistical measure that is equal to or
greater than a threshold amount greater than the statis-
tical measure of the other links.

13. The computer program product of claim 8, wherein the
switch, in response to receiving the message, updates a rout-
ing table of the switch to redirect ingress traffic directed to an
overused link in the LAG to another link in the LAG.

14. The computer program product of claim 13, wherein
the routing table of the switch is extended to include a direc-
tive field for each entry in the routing table, wherein the
directive field stores a pointer to a directive database that

10

15

16

indicates a directive for routing purposes, and wherein updat-
ing the routing table comprises updating a directive field of an
entry in the routing table associated with the overused link to
point to a directive in the directive database to route ingress
traffic to the another link.

15. The computer program product of claim 8, wherein the
computing device is a network adapter of a host computing
system, the computer readable program is executed on the
network adapter, and wherein the ingress traffic load is an
ingress traffic load for traffic flowing to the network adapter
from the switch.

16. The apparatus of claim 1, wherein the apparatus is a
network adapter of a host computing system, the network
adapter comprises the link aggregation logic, monitoring
logic, and ingress traffic load balancing logic, and wherein the
ingress traffic load is an ingress traffic load for traffic flowing
to the network adapter from the switch.

#* #* #* #* #*

